Passive Copy- Move Forgery Detection Using Speed-Up Robust Features, Histogram Oriented Gradients and Scale Invariant Feature Transform
نویسندگان
چکیده
Copy-Move is one of the most common technique for digital image tampering or forgery. Copy-Move in an image might be done to duplicate something or to hide an undesirable region. In some cases where these images are used for important purposes such as evidence in court of law, it is important to verify their authenticity. In this paper the authors propose a novel method to detect single region Copy-Move Forgery Detection (CMFD) using Speed-Up Robust Features (SURF), Histogram Oriented Gradient (HOG), Scale Invariant Features Transform (SIFT), and hybrid features such as SURF-HOG and SIFT-HOG. SIFT and SURF image features are immune to various transformations like rotation, scaling, translation, so SIFT and SURF image features help in detecting Copy-Move regions more accurately in compared to other image features. Further the authors have detected multiple regions COPY-MOVE forgery using SURF and SIFT image features. Experimental results demonstrate commendable performance of proposed methods. Passive CopyMove Forgery Detection Using Speed-Up Robust Features, Histogram Oriented Gradients and Scale Invariant Feature Transform
منابع مشابه
Detection of Copy-Move Forgery in Digital Images Using Scale Invariant Feature Transform Algorithm and the Spearman Relationship
Increased popularity of digital media and image editing software has led to the spread of multimedia content forgery for various purposes. Undoubtedly, law and forensic medicine experts require trustworthy and non-forged images to enforce rights. Copy-move forgery is the most common type of manipulation of digital images. Copy-move forgery is used to hide an area of the image or to repeat a por...
متن کاملA New Approach of copy move Forgery Detection using Rigorous Preprocessing and Feature Extraction
these days, advanced pictures are being used in an extensive variety of uses and for numerous reasons. They additionally assume an imperative part in the capacity and exchange of visual data, particularly the mystery ones. With this far reaching utilization of advanced pictures, notwithstanding the expanding number of devices and programming of computerized pictures altering, it has turned out ...
متن کاملA Fast Keypoint Based Hybrid Method for Copy Move Forgery Detection
Copy move forgery detection in digital images has become a very popular research topic in the area of image forensics. Due to the availability of sophisticated image editing tools and ever increasing hardware capabilities, it has become an easy task to manipulate the digital images. Passive forgery detection techniques are more relevant as they can be applied without the prior information about...
متن کاملGender Recognition from Human-Body Images Using Visible-Light and Thermal Camera Videos Based on a Convolutional Neural Network for Image Feature Extraction
Extracting powerful image features plays an important role in computer vision systems. Many methods have previously been proposed to extract image features for various computer vision applications, such as the scale-invariant feature transform (SIFT), speed-up robust feature (SURF), local binary patterns (LBP), histogram of oriented gradients (HOG), and weighted HOG. Recently, the convolutional...
متن کاملKey-point based copy-move forgery detection and their hybrid methods: A Review
No. 02 www.jiaats.com JIAATS-JEEE Abstract— Copy-move image forgery is one of the tampering techniques that need to be tackled with. Many copy-move forgery detection techniques such as exhaustive search, block and key-point matching based methods have been proposed for the detection of copy-move image forgery. Although key-point based methods were found better than block based methods in terms ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IJSDA
دوره 4 شماره
صفحات -
تاریخ انتشار 2015